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Preface
The purpose of this brief review is to provide the reader with the necessary background

to follow material in the book dealing with matrices and vectors, probability, and linear

systems. The review is divided into three main sections, each dealing one of the three

preceding topics. The following material is highly focused to the needs of someone

needing a refresher in one of these topics. Whenever possible, we have used the same

notation employed in the text.
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1 A Brief Review of Matrices
and Vectors

The purpose of this short document is to provide the reader with background sufficient

to follow the discussions in Digital Image Processing, 2nd ed., by Gonzalez and Woods.

The notation is the same that we use in the book.

1.1 Matrices

Introductory Definitions

We begin with the definition of a matrix. An m £ n (read “m by n”) matrix, denoted

by A, is a rectangular array of entries or elements (numbers, or symbols representing

numbers) enclosed typically by square brackets. In this notation, m is the number of

horizontal rows and n the number of vertical columns in the array. Sometimes m and n

are referred to as the dimensions or order of the matrix, and we say that matrix A has

dimensions m by n or is of order m by n: We use the following notation to represent an

m £ n matrix A:

A =

2
66664

a11 a12 ¢ ¢ ¢ a1n

a21 a22 ¢ ¢ ¢ a2n

...
... ¢ ¢ ¢ ...

am1 am2 ¢ ¢ ¢ amn

3
77775

where aij represents the (i; j)th entry.

If m = n, then A is a square matrix. If A is square and aij = 0 for all i 6= j,

and not all aii are zero, the matrix is said to be diagonal. In other words, a diagonal

matrix is a square matrix in which all elements not on the main diagonal are zero. A

diagonal matrix in which all diagonal elements are equal to 1 is called the identity matrix,

typically denoted by I. A matrix in which all elements are 0 is called the zero or null

matrix, typically denoted by 0. The trace of a matrix A (not necessarily diagonal),
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denoted tr(A), is the sum of the elements in the main diagonal of A. Two matrices A

and B are equal if and only if they have the same number of rows and columns, and

aij = bij for all i and j.

The transpose of an m £ n matrix A, denote AT , is an n £ m matrix obtained by

interchanging the rows and columns of A. That is, the first row of A becomes the first

column of AT , the second row of A becomes the second column of AT , and so on. A

square matrix for which AT = A is said to be symmetric.

Any matrix X for which XA = I and AX = I is called the inverse of A. Usually,

the inverse of A is denoted A¡1. Although numerous procedures exist for computing

the inverse of a matrix, the procedure usually is to use a computer program for this

purpose, so we will not dwell on this topic here. The interested reader can consult any

book an matrix theory for extensive theoretical and practical discussions dealing with

matrix inverses. A matrix that possesses an inverse in the sense just defined is called a

nonsingular matrix.

Associated with matrix inverses is the computation of the determinant of a matrix. Al

though the determinant is a scalar, its definition is a little more complicated than those

discussed in the previous paragraphs. Let A be an m £ m (square) matrix. The (i; j)

minor of A, denoted Mij , is the determinant of the (m¡1)£ (m¡1) matrix formed by

deleting the ith row and the jth column of A. The (i; j)cofactor of A, denoted Cij , is

(¡1)i+jMij . The determinant of a 1£1 matrix [®], denoted det ([®]), is det ([®]) = ®:

Finally, we define the determinant of an m £ m matrix A as

det (A) =
mX

j=1

a1jC1j :

In other words, the determinant of a (square) matrix is the sum of the products of the

elements in the first row of the matrix and the cofactors of the first row. As is true of

inverses, determinants usually are obtained using a computer.

Basic Matrix Operations

Let c be a real or complex number (often called a scalar). The scalar multiple of scalar

c and matrix A, denoted cA, is obtained by multiplying every elements of A by c. If

c = ¡1, the scalar multiple is called the negative of A.

Assuming that they have the same number of rows and columns, the sum of two matrices

A and B, denoted A + B, is the matrix obtained by adding the corresponding elements
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of the two matrices. In other words, the sum is an m£n matrix whose (i; j)th element

is aij + bij :Similarly, the difference of two matrices, denoted A ¡ B, has elements

aij ¡ bij .

The product, AB, of m £ n matrix A and p £ q matrix B, is an m £ q matrix C whose

(i; j)th element is formed by multiplying the entries across the ith row of A times the

entries down the jth column of B. In other words,

cij = ai1b1j + ai2b2j + ¢ ¢ ¢ + ainbpj

for i = 1; 2; : : : ;m and j = 1; 2; : : : ; q. We see from the preceding equation that matrix

multiplication is defined only if n and p are equal. Also, as will be shown shortly, the

sum of products just described is equal to the socalled inner product of rows of A with

columns of B. Finally, we note that division of one matrix by another is not defined.

Example 1.1 Suppose that

A =

"
1 ¡2

3 2

#

and

B =

"
1 2 4

1 3 1

#
:

Then,

C =

"
¡1 ¡4 2

5 12 14

#
:

Later in this discussion, we will make use of matrix products in which matrix B has

only one column. A simple example is
"

a b

c d

#"
x1

x2

#
=

"
ax1 + bx2

cx1 + dx2

#
:

Also of special interest are products in which matrices consist of only one row or one

column, appropriately called row and column matrices, respectively. In subsequent

discussions we refer to these as row vectors or column vectors, respectively, and denote

them by lowercase bold letters, with the understanding that they are row or column

matrices. For example, consider two column vectors a and b, of dimension m £ 1, as

follows:

a =

2
66664

a1

a2

...

am

3
77775

and

aT = [a1; a2; ¢ ¢ ¢ ; am]
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b =

2
66664

b1

b2
...

bm

3
77775

:

Keeping in mind the matrix dimensions required for matrix products defined above, the

product of a and b is a 1 £ 1 matrix, given by

aTb = bTa = a1b1 + a2b2 + ¢ ¢ ¢ + ambm

=
mX

i=1

aibi:

This particular product is often called the dot or inner product of two vectors. We have

much more to say about this in the following section. ¤

1.2 Vectors and Vector Spaces

Vectors

As introduced in the previous section, we refer to an m £ 1 column matrix as a column

vector. Such a vector assumes geometric meaning when we associate geometrical prop

erties with its elements. For example, consider the familiar twodimensional (Euclid

ean) space in which a point is represented by its (x; y) coordinates. These coordinates

can be expressed in terms of a column vector as follows:

u =

"
x

y

#
:

Then, for example, point (1; 2) becomes the specific vector

u =

"
1

2

#
:

Geometrically, we represent this vector as a directed line segment from the origin to

point (1; 2). In threedimensional space the vector would have components (x; y; z). In

mdimensional space we run out of letters and use the same symbol with subscripts to

represent the elements of a vector. That is, an mdimensional vector is represented as

x =

2
66664

x1

x2

...

xm

3
77775

:
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When expressed in the form of these column matrices, arithmetic operations between

vectors follow the same rules as they do for matrices. The product of a vector by scalar

is obtained simply by multiplying every element of the vector by the scalar. The sum

of two vectors x and y is formed by the addition of corresponding elements (x1 + y1,

x2 + y2, and so on), and similarly for subtraction. Multiplication of two vectors is as

defined in Example 1. Division of one vector by another is not defined.

Vector Spaces

Definition of a vector space is both intuitive and straightforward. A vector space is

defined as a nonempty set V of entities called vectors and associated scalars that satisfy

the conditions outlined in A through C below. A vector space is real if the scalars are

real numbers; it is complex if the scalars are complex numbers.

Condition A: There is in V an operation called vector addition, denoted x + y, that

satisfies:
1. x + y = y + x for all vectors x and y in the space.

2. x + (y + z) = (x + y) + z for all x, y, and z.

3. There exists in V a unique vector, called the zero vector, and denoted 0, such that
x + 0 = x and 0 + x = x for all vectors x.

4. For each vector x in V , there is a unique vector in V , called the negation of x, and
denoted ¡x, such that x + (¡x) = 0 and (¡x) + x = 0.

Condition B: There is in V an operation called multiplication by a scalar that associates

with each scalar c and each vector x in V a unique vector called the product of c and x,

denoted by cx and xc, and which satisfies:
1. c(dx) = (cd)x for all scalars c and d, and all vectors x.

2. (c + d)x = cx + dx for all scalars c and d, and all vectors x.

3. c(x + y) = cx + cy for all scalars c and all vectors x and y.

Condition C: 1x = x for all vectors x.

We are interested particularly in real vector spaces of real m £ 1 column matrices, with

vector addition and multiplication by scalars being as defined earlier for matrices. We

shall denote such spaces by <m: Using the notation introduced previously, vectors (col
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umn matrices) in <m are written as

x =

2
66664

x1

x2

...

xm

3
77775

:

Example 1.2 The vector space with which we are most familiar is the twodimensional

real vector space <2, in which we make frequent use of graphical representations for

operations such as vector addition, subtraction, and multiplication by a scalar. For

instance, consider the two vectors

a =

"
2

1

#

and

b =

"
1

3

#
:

Using the rules of matrix addition and subtraction we have

a + b =

"
3

4

#

and

a ¡ b =

"
1

¡2

#
:

Figure 1.1 shows the familiar graphical representation of these operations, as well as

multiplication of vector a by scalar c = ¡0:5. ¤

Consider two real vector spaces V0 and V such that: (1) Each element of V0 is also an

element of V (i.e., V0 is a subset of V ). (2) Operations on elements of V0 are the same

as on elements of V . Under these conditions, V0 is said to be a subspace of V .

A linear combination of vectors v1;v2; : : : ;vn is an expression of the form

®1v1 + ®2v2 + ¢ ¢ ¢ + ®nvn

where the ®0s are scalars.

A vector v is said to be linearly dependent on a set, S, of vectors v1;v2; : : : ;vn if

and only if v can be written as a linear combination of these vectors. Otherwise, v is

linearly independent of the set of vectors v1;v2; : : : ;vn.
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Figure 1.1

A set S of vectors v1;v2; : : : ;vn in V is said to span some subspace V0 of V if and

only if S is a subset of V0 and every vector v0 in V0 is linearly dependent on the vectors

in S. The set S is said to be a spanning set for V0. A basis for a vector space V is a

linearly independent spanning set for V . The number of vectors in the basis for a vector

space is called the dimension of the vector space. If, for example, the number of vectors

in the basis is n, we say that the vector space is ndimensional.

An important aspect of the concepts just discussed lies in the representation of any vector

in <m as a linear combination of the basis vectors. For example, any vector

x =

2
64

x1

x2

x3

3
75

in <3 can be represented as a linear combination of the basis vectors

2
64

1

0

0

3
75 ;

2
64

0

1

0

3
75 , and

2
64

0

0

1

3
75 .
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Vector Norms

A vector norm on a vector space V is a function that assigns to each vector v in V a

nonnegative real number, called the norm of v, denoted by kvk. By definition, the norm

satisfies the following conditions:

1. kvk > 0 for v 6= 0; k0k = 0;

2. kcvk = jcj kvk for all scalars c and vectors v, and

3. ku + vk · kuk + kvk :

There are numerous norms that are used in practice. In our work, the norm most often

used is the socalled 2norm, which, for a vector x in real <m, space is defined as

kxk =
£
x2

1 + x2
2 + ¢ ¢ ¢ + x2

m

¤1=2
:

The reader will recognize this expression as the Euclidean distance from the origin to

point x, which gives this expression the familiar name of the Euclidean norm. The

expression also is recognized as the length of a vector x, with origin at point 0. Based

on the multiplication of two column vectors discussed earlier, we see that the norm also

can be written as

kxk =
£
xTx

¤1=2
:

The well known CauchySchwartz inequality states that
¯̄
xTy

¯̄
· kxk kyk :

In words, this result states that the absolute value of the inner product of two vectors

never exceeds the product of the norms of the vectors. This result is used in several

places in the book. Another wellknown result used in the book is the expression

cos µ =
xTy

kxk kyk
where µ is the angle between vectors x and y, from which we have that the inner product

of two vectors can be written as

xTy = kxk kyk cos µ:

Thus, the inner product of two vectors can be expressed as a function of the norms of

the vectors and the angle between the vectors.

From the preceding results we have the definition that two vectors in <m are orthogonal

if and only if their inner product is zero. Two vectors are orthonormal if, in addition

to being orthogonal, the length of each vector is 1. From the concepts just discussed,



1.3 Eigenvalues and Eigenvectors 9

we see that an arbitrary vector a is turned into a vector an of unit length by performing

the operation an = a= kak : Clearly, then, kank = 1: A set of vectors is said to be

an orthogonal set if every two vectors in the set are orthogonal. A set of vectors is

orthonormal if every two vectors in the set are orthonormal.

Some Important Aspects of Orthogonality

Let B = fv1;v2; : : : ;vng be an orthogonal or orthonormal basis in the sense defined

in the previous section. Then, an important result in vector analysis is that any vector v

can be represented with respect to the orthogonal basis B as

v = ®1v1 + ®2v2 + ¢ ¢ ¢ + ®nvn

where the coefficients are given by

®i =
vT vi

vT
i vi

=
vTvi

kvik2 :

The key importance of this result is that, if we represent a vector as a linear combination

of orthogonal or orthonormal basis vectors, we can determine the coefficients directly

from simple inner product computations. It is possible to convert a linearly independent

spanning set of vectors into an orthogonal spanning set by using the wellknown Gram

Schmidt process. There are numerous programs available that implement the Gram

Schmidt and similar processes, so we will not dwell on the details here.

1.3 Eigenvalues and Eigenvectors

Properties of eigenvalues and eigenvectors are used extensively in Digital Image Process

ing, 2nd ed.. The following discussion is a brief overview of material fundamental to a

clear understanding of the relevant material discussed in the book. We will limit discus

sion to real numbers, but the following results also are applicable to complex numbers.

Definition: The eigenvalues of a real matrix M are the real numbers ¸ for which there

is a nonzero vector e such that Me = ¸e: The eigenvectors of M are the nonzero

vectors e for which there is a real number ¸ such that Me = ¸e: If Me = ¸e for

e 6= 0, then e is an eigenvector of M associated with eigenvalue ¸, and vice versa.

The eigenvectors and corresponding eigenvalues of M constitute the eigensystem of

M. Numerous theoretical and truly practical results in the application of matrices and

vectors stem from this beautifully simple definition.
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Example 1.3 Consider the matrix

M =

"
1 0

0 2

#
:

It is easy to verify that Me1 = ¸1e1 and Me2 = ¸2e2 for ¸1 = 1, ¸2 = 2 and

e1 =

"
1

0

#

and

e2 =

"
0

1

#
:

In other words, e1 is an eigenvector of M with associated eigenvalue ¸1, and similarly

for e2 and ¸2: ¤

The following properties, which we give without proof, are essential background in the

use of vectors and matrices in digital image processing. In each case, we assume a real

matrix of order m £ m although, as stated earlier, these results are equally applicable to

complex numbers. We focus on real quantities simply because they play the dominant

role in our work.

1. If f¸1; ¸2; : : : ; ¸qg; q · m; is set of distinct eigenvalues of M, and ei is an eigenvec
tor of M with corresponding eigenvalue ¸i; i = 1; 2; : : : ; q; then fe1; e2; : : : ;eqg is
a linearly independent set of vectors. Note an important implication of this property:
If an m £ m matrix M has m distinct eigenvalues, its eigenvectors will constitute
an orthogonal (orthonormal) set, which means that any mdimensional vector can be
expressed as a linear combination of the eigenvectors of M.

2. The numbers along the main diagonal of a diagonal matrix are equal to its eigenval
ues. It is not difficult to show using the definition Me = ¸e that the eigenvectors
can be written by inspection when M is diagonal.

3. A real, symmetric m £ m matrix M has a set of m linearly independent eigenvec
tors that may be chosen to form an orthonormal set. This property is of particular
importance when dealing with covariance matrices (e.g., see Section 11.4 and our
review of probability) which are real and symmetric.

4. A corollary of Property 3 is that the eigenvalues of an m £ m real symmetric matrix
are real, and the associated eigenvectors may be chosen to form an orthonormal set
of m vectors.

5. Suppose that M is a real, symmetric m £ m matrix, and that we form a matrix A
whose rows are the m orthonormal eigenvectors of M. Then, the product AAT = I
because the rows of A are orthonormal vectors. (Recall from the discussion on
matrix multiplication that the product of two matrices is formed by the inner product
of the rows of one matrix with the column of the other. Since the rows of A and
columns of AT are orthonormal, their inner products are either 0 or 1). Thus, we see
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that A¡1 = AT when matrix A is formed as was just described.

6. Consider matrices M and A as defined in 5. Then, the product D = AMA¡1 =
AMAT is a diagonal matrix whose elements along the main diagonal are the eigen
values of M. The eigenvectors of D are the same as the eigenvectors of M.

Example 1.4 Suppose that we have a random population of vectors, denoted by fxg,

with covariance matrix (see the following chapter on a review of probability):

Cx = Ef(x ¡ mx)(x ¡ mx)T g
where E is the expected value operator and mx is the mean of the population. Covari

ance matrices are real, square, symmetric matrices which, from Property 3, are known

to have a set of orthonormal eigenvectors.

Suppose that we perform a transformation of the form y = Ax on each vector x, where

the rows of A are the orthonormal eigenvectors of Cx. The covariance matrix of the

population fyg is

Cy = Ef(y ¡ my)(y ¡ my)T g
= Ef(Ax ¡ Amx)(Ax ¡ Amx)T g
= EfA(x ¡ mx)(x ¡ mx)T AT g
= AEf(x ¡ mx)(x ¡ mx)T gAT

= ACxA
T

where A was factored out of the expectation operator because it is a constant matrix.

From Property 6, we know that Cy = ACxAT is a diagonal matrix with the eigenval

ues of Cx along its main diagonal. Recall that the elements along the main diagonal

of a covariance matrix are the variances of the components of the vectors in the popu

lation. Similarly, the off diagonal elements are the covariances of the components of

these vectors The fact that the covariance Cy is diagonal means that the elements of the

vectors in the population fyg are uncorrelated (their covariances are 0). Thus, we see

that application of the linear transformation y = Ax involving the eigenvectors of Cx

decorrelates the data, and the elements of Cy along its main diagonal give the variances

of the components of the y’s along the eigenvectors. Basically, what has been accom

plished here is a coordinate transformation that aligns the data along the eigenvectors of

the covariance matrix of the population.

The preceding concepts are illustrated in Fig. 1.2. Figure 1.2(a) shows a data population

fxg in two dimensions, along with the eigenvectors of Cx (the black dot is the mean).

The result of performing the transformation y = A(x ¡ mx) on the x’s is shown in
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Fig. 1.2(b). The fact that we subtracted the mean from the x’s caused the y’s to have

zero mean, so the population is centered on the coordinate system of the transformed

data. It is important to note that all we have done here is make the eigenvectors the new

coordinate system (y1; y2): Because the covariance matrix of the y’s is diagonal, this in

fact also decorrelated the data. The fact that the main data spread is along e1 is due to

the fact that the rows of the transformation matrix A were chosen according the order

of the eigenvalues, with the first row being the eigenvector corresponding to the largest

eigenvalue. ¤

Figure 1.2



2 A Brief Review of Probability
and Random Variables

The principal objective of the following material is to start with the basic principles

of probability and to bring the reader to the level required to be able to follow all

probabilitybased developments in the book.

2.1 Sets and Set Operations

Probability events are modeled as sets, so it is customary to begin a study of probability

by defining sets and some simple operations among sets.

Sets

Informally, a set is a collection of objects, with each object in a set often referred to as an

element or member of the set. Familiar examples include the set of all image processing

books in the world, the set of prime numbers, and the set of planets circling the sun.

Typically, sets are represented by uppercase letters, such as A, B, and C, and members

of sets by lowercase letters, such as a, b, and c. We denote the fact that an element a

belongs to set A by

a 2 A

If a is not an element of A then we write

a =2 A:

A set can be specified by listing all of its elements, or by listing properties common to

all elements. For example, suppose that I is the set of all integers. A set B consisting

the first five nonzero integers is specified using the notation

B = f1; 2; 3; 4; 5g:
The set of all integers less than 10 is specified using the notation

C = fc 2 I j c < 10g
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which we read as “C is the set of integers such that each members of the set is less than

10.” The “such that” condition is denoted by the symbol \ j " and, as is shown in the

previous two equations, the elements of the set are enclosed by curly brackets. The set

with no elements is called the empty or null set, which we denote by ;:

Two sets A and B are said to be equal if and only if they contain the same elements. Set

equality is denoted by

A = B:

If the elements of two sets are not the same, we say that the sets are not equal, and denote

this by

A 6= B:

If every element of B is also an element of A, we say that B is a subset of A:

B µ A

where the equality is included to account for the case in which A and B have the same

elements. If A contains more elements than B, then B is said to be a proper subset of

A, and we use the notation

B ½ A:

Finally, we consider the concept of a universal set, which we denote by U and define

to be the set containing all elements of interest in a given situation. For example, in

an experiment of tossing a coin, there are two possible (realistic) outcomes: heads or

tails. If we denote heads by H and tails by T , the universal set in this case is fH;Tg.

Similarly, the universal set for the experiment of throwing a single die has six possible

outcomes, which normally are denoted by the face value of the die, so in this case U =

f1; 2; 3; 4; 5; 6g: For obvious reasons, the universal set is frequently called the sample

space, which we denote by S. It then follows that, for any set A, we assume that

; µ A µ S, and for any element a, a 2 S and a =2 ;:

Some Basic Set Operations

The operations on sets associated with basic probability theory are straightforward. The

union of two sets A and B, denoted by

A [ B

is the set of elements that are either in A or in B, or in both. In other words,

A [ B = fz j z 2 A or z 2 Bg:

Similarly, the intersection of sets A and B, denoted by

A \ B



15

is the set of elements common to both A and B; that is,

A \ B = fz j z 2 A and z 2 Bg:

Two sets having no elements in common are said to be disjoint or mutually exclusive, in

which case

A \ B = ;:

The complement of set A is defined as

Ac = fz j z =2 Ag:
Clearly, (Ac)c = A: Sometimes the complement of A is denoted as A.

The difference of two sets A and B, denoted A ¡ B, is the set of elements that belong

to A, but not to B. In other words,

A ¡ B = fz j z 2 A; z =2 Bg:

It is easily verified that (A ¡ B) = A \ Bc:

The union operation is applicable to multiple sets. For example the union of sets

A1; A2; : : :An is the set of points that belong to at least one of these sets. Similar

comments apply to the intersection of multiple sets.

Table 2.1 summarizes without proof several important relationships between sets. Proofs

for these relationships are found in most books dealing with elementary set theory.

Table 2.1

Some Important Set Relationships

Sc = ;; ;c = S;

A [ Ac = S; A \ Ac = ;
A [ ; = A; A \ ; = ;; S [ ; = S; S \ ; = ;

A [ A = A; A \ A = A; A [ S = S; A \ S = A

A [ B = B [ A; A \ B = B \ A

A \ (B [ C) = (A \ B) [ (A \ C)

A [ (B \ C) = (A [ B) \ (A [ C)

(A [ B) [ C = A [ (B [ C) = A [ B [ C

(A \ B) \ C = A \ (B \ C) = A \ B \ C

It often is quite useful to represent sets and sets operations in a socalled Venn diagram,

in which S is represented as a rectangle, sets are represented as areas (typically circles),

and points are associated with elements. The following example shows various uses of

Venn diagrams.

Example 2.1 Figure 2.1 shows various examples of Venn diagrams. The shaded areas

are the result (sets of points) of the operations indicated in the figure. The diagrams in
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the top row are self explanatory. The diagrams in the bottom row are used to prove the

validity of the expression

A \ (B [ C) = (A \ B) [ (A \ C) ¡ A \ B \ C

which is used in the proof of some probability relationships.¤

Figure 2.1

2.2 Relative Frequency and Probability

A random experiment is an experiment in which it is not possible to predict the outcome.

Perhaps the best known random experiment is the tossing of a coin. Assuming that the

coin is not biased, we are used to the concept that, on average, half the tosses will

produce heads (H) and the others will produce tails (T ). This is intuitive and we do not

question it. In fact, few of us have taken the time to verify that this is true. If we did,

we would make use of the concept of relative frequency. Let n denote the total number

of tosses, nH the number of heads that turn up, and nT the number of tails. Clearly,

nH + nT = n:

Dividing both sides by n gives us
nH

n
+

nT

n
= 1:

The term nH=n is called the relative frequency of the event we have denoted by H, and

similarly for nT =n. If we performed the tossing experiment a large number of times,

we would find that each of these relative frequencies tends toward a stable, limiting

value. We call this value the probability of the event, and denoted it by P (event): In

the current discussion the probabilities of interest are P (H) and P (T ). We know in this

case that P (H) = P (T ) = 1=2. Note that the event of an experiment need not signify
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a single outcome. For example, in the tossing experiment we could let D denote the

event “heads or tails,” (note that the event is now a set) and the event E, “neither heads

nor tails.” Then, P (D) = 1 and P (E) = 0.

The first important property of P is that, for an event A,

0 · P (A) · 1:

That is, the probability of an event is a positive number bounded by 0 and 1. For the

certain event, S,

P (S) = 1:

Here the certain event means that the outcome is from the universal or sample set, S.

Similarly, we have that for the impossible event, Sc

P (Sc) = 0:

This is the probability of an event being outside the sample set. In the example given at

the end of the previous paragraph, S = D and Sc = E:

Consider a case with the possibilities that events A or B or both or neither can occur.

The event that either events A or B or both have occurred is simply the union of A

and B (recall from two paragraphs back that events can be sets). Earlier, we denoted

the union of two sets by A [ B: One often finds the equivalent notation A + B used

interchangeably in discussions on probability. Similarly, the event that both A and B

occurred is given by the intersection of A and B, which we denoted earlier by A \ B:

The equivalent notation AB is used much more frequently to denote the occurrence of

both events in an experiment.

Suppose that we conduct our experiment n times. Let n1 be the number of times that

only event A occurs; n2 the number of times that B occurs; n3 the number of times that

AB occurs; and n4 the number of times that neither A nor B occur. Clearly, n1 +n2 +

n3 + n4 = n. Using these numbers we obtain the following relative frequencies:
nA

n
=

n1 + n3

n
nB

n
=

n2 + n3

n
nAB

n
=

n3

n
and

nA[B

n
=

n1 + n2 + n3

n

=
(n1 + n3) + (n2 + n3) ¡ n3

n

=
nA

n
+

nB

n
¡ nAB

n
:
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Using the previous definition of probability based on relative frequencies we have the

important result

P (A [ B) = P (A) + P (B) ¡ P (AB):

If A and B are mutually exclusive it follows that the set AB is empty and, consequently,

P (AB) = 0.

The relative frequency of event A occurring, given that event B has occurred, is given

by
nA=B

n
=

nAB

n
nB

n

=
n3

n2 + n3
:

This conditional probability is denoted by P (A=B), where we note the use of the symbol

\= "to denote conditional occurrence. It is common terminology to refer to P (A=B) as

“the probability of A given B.” Similarly, the relative frequency of B occurring, given

that A has occurred is
nB=A

n
=

nAB

n
nA

n

=
n3

n1 + n3
:

We call this relative frequency “the probability of B given A,” and denote it by P (B=A).

A little manipulation of the preceding results yields the following important relation

ships

P (A=B) =
P (B=A)P (A)

P (B)
and

P (AB) = P (A)P (B=A) = P (B)P (A=B):

The second expression may be written as

P (B=A) =
P (A=B)P (B)

P (A)
which is known as Bayes’ theorem, so named after the 18th century mathematician

Thomas Bayes.

Example 2.2 Suppose that we want to extend the expression

P (A [ B) = P (A) + P (B) ¡ P (AB)

to three variables, A, B, and C. Recalling that AB is the same as A \ B, we replace B

by B [ C in the preceding equation to obtain

P (A [ B [ C) = P (A) + P (B [ C) ¡ P (A \ [B [ C]):

The second term in the right can be written as

P (B [ C) = P (B) + P (C) ¡ P (BC):
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From Table 2.1, we know that A \ [B [ C] = (A \ B) [ (A \ C), so

P (A \ [B [ C]) = P ([A \ B] [ [A \ C])

= P (AB [ AC)

= P (AB) + P (AC) ¡ P (ABC):

Collecting terms gives us the final result

P (A [ B [ C) = P (A) + P (B) + P (C) ¡ P (AB) ¡ P (AC) ¡ P (BC) + P (ABC):

Proceeding in a similar fashion gives

P (ABC) = P (A)P (B=A)P (C=AB):

The preceding approach can be used to generalize these expressions to N events. ¤

If A and B are statistically independent, then P (B=A) = P (B) and it follows that

P (A=B) = P (A)

P (B=A) = P (B)

and

P (AB) = P (A)P (B):

It was stated earlier that if sets (events) A and B are mutually exclusive, then A\B = ;
from which it follows that P (AB) = P (A \ B) = 0: As was just shown, the two sets

are statistically independent if P (AB) = P (A)P (B), which we assume to be nonzero

in general. Thus, we conclude that for two events to be statistically independent, they

cannot be mutually exclusive.

For three events A, B, and C to be independent, it must be true that

P (AB) = P (A)P (B)

P (AC) = P (A)P (C)

P (BC) = P (B)P (C)

and

P (ABC) = P (A)P (B)P (C):

In general, for N events to be statistically independent, it must be true that, for all

combinations 1 · i · j · k · ¢ ¢ ¢ · N

P (AiAj) = P (Ai)P (Aj)

P (AiAjAk) = P (Ai)P (Aj)P (Ak)

...

P (A1A2 ¢ ¢ ¢AN ) = P (A1)P (A2) ¢ ¢ ¢P (AN ):

Example 2.3 (a) An experiment consists of throwing a single die twice. The probability
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of any of the six faces, 1 through 6, coming up in either experiment is 1/6. Suppose that

we want to find the probability that a 2 comes up, followed by a 4. These two events are

statistically independent (the second event does not depend on the outcome of the first).

Thus, letting A represent a 2 and B a 4,

P (AB) = P (A)P (B) =
1

6
£ 1

6
=

1

36
:

We would have arrived at the same result by defining “2 followed by 4” to be a single

event, say C. The sample set of all possible outcomes of two throws of a die is 36.

Then, P (C) = 1=36:

(b) Consider now an experiment in which we draw one card from a standard card deck

of 52 cards. Let A denote the event that a king is drawn, B denote the event that a queen

or jack is drawn, and C the event that a diamondface card is drawn. A brief review of

the previous discussion on relative frequencies would show that

P (A) =
4

52
;

P (B) =
8

52
;

and

P (C) =
13

52
:

Furthermore,

P (AC) = P (A \ C) = P (A)P (C) =
1

52
and

P (BC) = P (B \ C) = P (B)P (C) =
2

52
:

Events A and B are mutually exclusive (we are drawing only one card, so it would

be impossible to draw a king and a queen or jack simultaneously). Thus, it follows

from the preceding discussion that P (AB) = P (A \ B) = 0 [and also that P (AB) 6=
P (A)P (B)].

(c) As a final experiment, consider the deck of 52 cards again, and let A1; A2; A3; and

A4 represent the events of drawing an ace in each of four successive draws. If we

replace the card drawn before drawing the next card, then the events are statistically

independent and it follows that

P (A1A2A3A4) = P (A1)P (A2)P (A3)P (A4)

=

·
4

52

¸4

t 3:5 £ 10¡5:

Suppose now that we do not replace the cards that are drawn. The events then are no
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longer statistically independent. With reference to the results in Example 2.2, we write

P (A1A2A3A4) = P (A1)P (A2A3A4=A1)

= P (A1)P (A2=A1)P (A3A4=A1A2)

= P (A1)P (A2=A1)P (A3=A1A2)P (A4=A1A2A3)

=
4

52
¢ 3

51
¢ 2

50
¢ 1

49
t 3:7 £ 10¡6:

Thus we see that not replacing the drawn card reduced our chances of drawing fours

successive aces by a factor of close to 10. This significant difference is perhaps larger

than might be expected from intuition. ¤

2.3 Random Variables

Random variables often are a source of confusion when first encountered. This need

not be so, as the concept of a random variable is in principle quite simple. A random

variable, x, is a realvalued function defined on the events of the sample space, S. In

words, for each event in S, there is a real number that is the corresponding value of the

random variable. Viewed yet another way, a random variable maps each event in S onto

the real line. That is it. A simple, straightforward definition.

Part of the confusion often found in connection with random variables is the fact that

they are functions. The notation also is partly responsible for the problem. In other

words, although typically the notation used to denote a random variable is as we have

shown it here, x, or some other appropriate variable, to be strictly formal, a random

variable should be written as a function x(¢) where the argument is a specific event being

considered. However, this is seldom done, and, in our experience, trying to be formal by

using function notation complicates the issue more than the clarity it introduces. Thus,

we will opt for the less formal notation, with the warning that it must be keep clearly in

mind that random variables are functions.

Example 2.4 Consider again the experiment of drawing a single card from a standard

deck of 52 cards. Suppose that we define the following events. A: a heart; B: a spade;

C: a club; and D: a diamond, so that S = fA;B;C;Dg. A random variable is easily

defined by letting x = 1 represent event A, x = 2 represent event B, and so on.

As a second illustration, consider the experiment of throwing a single die and observing

the value of the upface. We can define a random variable as the numerical outcome of

the experiment (i.e., 1 through 6), but there are many other possibilities. For example,

a binary random variable could be defined simply by letting x = 0 represent the event
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that the outcome of throw is an even number and x = 1 otherwise.

Note the important fact in the examples just given that the probability of the events have

not changed; all a random variable does is map events onto the real line. ¤

Thus far we have been concerned with random variables whose values are discrete. To

handle continuous random variables we need some additional tools. In the discrete case,

the probabilities of events are numbers between 0 and 1. When dealing with continuous

quantities (which are not denumerable) we can no longer talk about the “probability of

an event” because that probability is zero. This is not as unfamiliar as it may seem. For

example, given a continuous function we know that the area of the function between two

limits a and b is the integral from a to b of the function. However, the area at a point is

zero because the integral from,say, a to a is zero. We are dealing with the same concept

in the case of continuous random variables.

Thus, instead of talking about the probability of a specific value, we talk about the

probability that the value of the random variable lies in a specified range. In particular,

we are interested in the probability that the random variable is less than or equal to (or,

similarly, greater than or equal to) a specified constant a. We write this as

F (a) = P (x · a):

If this function is given for all values of a (i.e., ¡1 < a < 1), then the values of

random variable x have been defined. Function F is called the cumulative probability

distribution function or simply the cumulative distribution function (cdf). The shortened

term distribution function also is used.

It is important to point out that the notation we have used makes no distinction between

a random variable and the values it assumes. If confusion is likely to arise, we can

use more formal notation in which we let capital letters denote the random variable and

lowercase letters denote its values. For example, the cdf using this notation would be

written as FX(x) = P (X · x). When confusion is not likely, the cdf often is written

simply as F (x). This notation will be used in the following discussion when speaking

generally about the cdf of a random variable.

Due to the fact that it is a probability, the cdf has the following properties:
1. F (¡1) = 0

2. F (1) = 1

3. 0 · F (x) · 1

4. F (x1) · F (x2) if x1 < x2
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5. P (x1 < x · x2) = F (x2) ¡ F (x1)

6. F (x+) = F (x);

where x+ = x + ", with " being a positive, infinitesimally small number.

The probability density function (pdf) of random variable x is defined as the derivative

of the cdf

p(x) =
dF (x)

dx
:

The term density function is commonly used also. The pdf satisfies the following prop

erties:
1. p(x) ¸ 0 for all x

2.
R 1
¡1 p(x)dx = 1

3. F (x) =
R x

¡1 p(®)d®, where ® is a dummy variable

4. P (x1 < x · x2) =
R x2

x1
p(x)dx:

We point out that the preceding concepts are applicable to discrete random variables.

In the discrete case, we have a finite number of events and we talk about probabilities,

rather than probability density functions. Also, we replace the integrals by summa

tions and sometimes subscript the random variables. For example, in the case of a dis

crete variable with N possible values we would denote the probabilities by P (xi); i =

1; 2; : : : ; N: In Section 3.3 of the book we used the notation p(rk), k = 0; 1; : : : ; L ¡ 1;

to denote the histogram of an image with L possible gray levels, rk, k = 0; 1; : : : ; L¡1,

where p(rk) is the probability of the kth gray level (random event) occurring. Clearly,

the discrete random variables in this case are gray levels. It generally is clear from

the context whether one is working with continuous or discrete random variables, and

whether the use of subscripting is necessary for clarity. Also, uppercase letters (e.g.,

P ) are frequently used to distinguish between probabilities and probability density func

tions (e.g., p) when they are used together in the same discussion.

We will have much more to say about probability density functions in the following

sections. Before leaving this section, however, we point out that if a random variable x

is transformed by a monotonic transformation function T (x) to produce a new random

variable y, the probability density function of y can be obtained from knowledge of T (x)

and the probability density function of x, as follows:

py(y) = px(x)

¯̄
¯̄dx

dy

¯̄
¯̄
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where the subscripts on the p’s are used to denote the fact that they are different func

tions, and the vertical bars signify the absolute value. Recall that a function T (x) is

monotonically increasing if T (x1) < T (x2) for x1 < x2; and monotonically decreasing

if T (x1) > T (x2) for x1 < x2: The preceding equation is valid if T (x) is an increasing

or decreasing monotonic function.

2.4 Expected Value and Moments

The expected value of a function g(x) of a continuos random variable is defined as

E[g(x)] =

Z 1

¡1
g(x)p(x)dx:

If the random variable is discrete the definition becomes

E[g(x)] =
NX

i=1

g(xi)P (xi):

The expected value is one of the operations used most frequently when working with

random variables. For example, the expected value of random variable x is obtained by

letting g(x) = x:

E[x] = x = m =

Z 1

¡1
xp(x)dx

when x is continuos and

E[x] = x = m =
NX

i=1

xiP (xi)

when x is discrete. The expected value of x is equal to its average (or mean) value,

hence the use of the equivalent notation x and m.

The variance of a random variable, denoted by ¾2; is obtained by letting g(x) = x2

which gives

¾2 = E[x2] =

Z 1

¡1
x2p(x)dx

for continuous random variables and

¾2 = E[x2] =
NX

i=1

x2
i P (xi)

for discrete variables. Of particular importance is the variance of random variables that

have been normalized by subtracting their mean. In this case, the variance is

¾2 = E[(x ¡ m)2] =

Z 1

¡1
(x ¡ m)2p(x)dx

and

¾2 = E[(x ¡ m)2] =
NX

i=1

(xi ¡ m)2P (xi)

for continuous and discrete random variables, respectively. The square root of the vari
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ance is called the standard deviation, and is denoted by ¾:

We can continue along this line of thought and define the nth central moment of a con

tinuous random variable by letting g(x) = (x ¡ m)n:

¹n = E[(x ¡ m)n] =

Z 1

¡1
(x ¡ m)np(x)dx

and

¹n = E[(x ¡ m)n] =
NX

i=1

(xi ¡ m)nP (xi)

for discrete variables, where we assume that n ¸ 0. Clearly, ¹0 = 1; ¹1 = 0; and

¹2 = ¾2: The term central when referring to moments indicates that the mean of the

random variables has been subtracted out. The moments defined above in which the

mean is not subtracted out sometimes are called moments about the origin.

In image processing moments are used for a variety of purposes, including histogram

processing, segmentation, and description. In general, moments are used to characterize

the probability density function of a random variable. For example, the second, third,

and fourth central moments are intimately related to the shape of the probability density

function of a random variable. The second central moment (the centralized variance) is a

measure of spread of values of a random variable about its mean value, the third central

moment is a measure of skewness (bias to the left or right) of the values of x about the

mean value, and the fourth moment is a relative measure of flatness (e.g., see Section

11.3.3). In general, knowing all the moments of a density specifies that density.

Example 2.5 Consider an experiment consisting of repeatedly firing a rifle at a target,

and suppose that we wish to characterize the behavior of bullet impacts on the target in

terms of whether we are shooting high or low.. We divide the target into an upper and

lower region by passing a horizontal line through the bull’seye. The events of interest

are the vertical distances from the center of an impact hole to the horizontal line just

described. Distances above the line are considered positive and distances below the line

are considered negative. The distance is zero when a bullet hits the line.

In this case, we define a random variable directly as the value of the distances in our

sample set. Computing the mean of the random variable will tell us whether, on average,

we are shooting high or low. If the mean is zero, we know that the average of our shots

are on the line. However, the mean does not tell us how far our shots deviated from

the horizontal. The variance (or standard deviation) will give us an idea of the spread of

the shots. A small variance indicates a tight grouping (with respect to the mean, and in

the vertical position); a large variance indicates the opposite. Finally, a third moment
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of zero would tell us that the spread of the shots is symmetric about the mean value, a

positive third moment would indicate a high bias, and a negative third moment would

tell us that we are shooting low more than we are shooting high with respect to the mean

location. ¤

2.5 The Gaussian Probability Density Function

Because of its importance, we will focus in this tutorial on the Gaussian probability

density function to illustrate many of the preceding concepts, and also as the basis for

generalization to more than one random variable in Sections 2.6 and 2.7. The reader is

referred to Section 5.2.2 of the book for examples of other density functions.

A random variable is called Gaussian if it has a probability density of the form

p(x) =
1p
2¼¾

e¡(x¡m)2=¾2

where m and ¾ are as defined in the previous section. The term normal also is used to

refer to the Gaussian density. A plot and properties of this density function are given in

Section 5.2.2 of the book.

From the discussion in Section 2.3 of this review, the cumulative distribution function

corresponding to the Gaussian density is

F (x) =

Z x

¡1
p(x)dx

=
1p
2¼¾

Z x

¡1
e¡(x¡m)2=¾2

dx:

which, as before, we interpret as the probability that the random variable lies between

minus infinite and an arbitrary value x. This integral has no known closedform solution,

and it must be solved by numerical or other approximation methods. Extensive tables

exist for the Gaussian cdf.

2.6 Several Random Variables

In Example 2.5 we used a single random variable to describe the behavior of rifle shots

with respect to a horizontal line passing through the bull’seye in the target. Although

this is useful information, it certainly leaves a lot to be desired in terms of telling us

how well we are shooting with respect to the center of the target. In order to do this we

need two random variables that will map our events onto the xyplane. It is not difficult

to see how if we wanted to describe events in 3D space we would need three random
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variables. In general, we consider in this section the case of n random variables, which

we denote by x1; x2; : : : ; xn (the use of n here is not related to our use of the same

symbol to denote the nth moment of a random variable).

It is convenient to use vector notation when dealing with several random variables.

Thus, we represent a vector random variable x as

x =

2
66664

x1

x2

...

xn

3
77775

:

Then, for example, the cumulative distribution function introduced earlier becomes

F (a) = F (a1; a2; : : : ; an)

= Pfx1 · a1; x2 · a2; : : : ; xn · ang
when using vectors. As before, when confusion is not likely, the cdf of a random vari

able vector often is written simply as F (x). This notation will be used in the following

discussion when speaking generally about the cdf of a random variable vector.

As in the single variable case, the probability density function of a random variable

vector is defined in terms of derivatives of the cdf; that is,

p(x) = p(x1; x2; : : : ; xn)

=
@nF (x1; x2; : : : ; xn)

@x1@x2 ¢ ¢ ¢ @xn
:

An example of a multivariable density will follow shortly. The expected value of a

function of x is defined basically as before:

E[g(x)] = E[g(x1; x2; : : : ; xn)]

=

1Z

¡1

1Z

¡1

¢ ¢ ¢
1Z

¡1

g(x1; x2; : : : ; xn)p(x1; x2; : : : ; xn)dx1dx2 ¢ ¢ ¢dxn:

Cases dealing with expectation operations involving pairs of elements of x are particu

larly important. For example, the joint moment (about the origin) of order kq between

variables xi and xj is

´kq(i; j) = E[xk
i xq

j ] =

1Z

¡1

1Z

¡1

xk
i xq

jp(xi; xj)dxidxj :

When working with any two random variables (any two elements of x) it is common

practice to simplify the notation by using x and y to denote the random variables. In



28 Chapter 2 A Brief Review of Probability and Random Variables

this case the joint moment just defined becomes

´kq = E[xkyq] =

1Z

¡1

1Z

¡1

xkyqp(x; y)dxdy:

It is easy to see that ´k0 is the kth moment of x and ´0q is the qth moment of y, as

discussed in Section 2.4.

The moment ´11 = E[xy] is called the correlation of x and y. As discussed in Chapters

4 and 12 of the book, correlation is an important concept in image processing. In fact,

it is important in most areas of signal processing, where typically it is given a special

symbol, such as Rxy:

Rxy = ´11 = E[xy] =

1Z

¡1

1Z

¡1

xyp(x; y)dxdy:

If the condition

Rxy = E[x]E[y]

holds, then the two random variables are said to be uncorrelated. From the discussion

in Section 2.2, we know that if x and y are statistically independent, then p(x; y) =

p(x)p(y), in which case we write

Rxy =

1Z

¡1

xp(x)dx

1Z

¡1

yp(y)dy = E[x]E[y]:

Thus, we see that if two random variables are statistically independent then they are also

uncorrelated. The converse of this statement is not true in general.

The joint central moment of order kq involving random variables x and y is defined as

¹kq = E[(x ¡ mx)k(y ¡ my)q ]

=

1Z

¡1

1Z

¡1

(x ¡ mx)k(y ¡ my)qp(x; y)dxdy

where mx = E[x] and my = E[y] are the means of x and y, as defined earlier. We note

that

¹20 = E[(x ¡ mx)2]

and

¹02 = E[(y ¡ my)
2]

are the variances of x and y, respectively. The moment ¹11

¹11 = E[(x ¡ mx)(y ¡ my)]

=

1Z

¡1

1Z

¡1

(x ¡ mx)(y ¡ my)p(x; y)dxdy
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is called the covariance of x and y. As in the case of correlation, the covariance is an

important concept, usually given a special symbol such as Cxy . By direct expansion of

the terms inside the expected value brackets, and recalling the mx = E[x] and my =

E[y], it is straightforward to show that

Cxy = E[xy] ¡ myE[x] ¡ mxE[y] + mxmy

= E[xy] ¡ E[x]E[y]

= Rxy ¡ E[x]E[y]:

From our discussion on correlation, we see that the covariance is zero if the random

variables are either uncorrelated or statistically independent. This is an important result

worth remembering.

If we divide the covariance by the square root of the product of the variances we obtain

° =
¹11p
¹20¹02

=
Cxy

¾x¾y

= E

·
(x ¡ mx)

¾x

(y ¡ my)

¾y

¸
:

The quantity ° is called the correlation coefficient of random variables x and y. It can

be shown that the correlation coefficient is in the range ¡1 · ° · 1 (see Problem 12.5).

As discussed in Section 12.2.1, the correlation coefficient is used in image processing

for matching.

2.7 The Multivariate Gaussian Density

As an illustration of a probability density function of more than one random variable, we

consider the multivariate Gaussian probability density function, defined as

p(x) =
1

(2¼)n=2 jCj1=2
e¡ 1

2 [(x¡m)T C¡1(x¡m)]

where n is the dimensionality (number of components) of the random vector x, C is the

covariance matrix (to be defined below), jCj is the determinant of matrix C, m is the

mean vector (also to be defined below) and T indicates transposition (see the review of

matrices and vectors).

The mean vector is defined as
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m = E[x] =

2
66664

E[x1]

E[x2]
...

E[xn]

3
77775

and the covariance matrix is defined as

C = E[(x ¡ m)(x ¡ m)T ]:

The element of C are the covariances of the elements of x, such that

cij = Cxixj = E[(xi ¡ mi)(xj ¡ mj)]

where, for example, xi is the ith component of x and mi is the ith component of m.

Covariance matrices are real and symmetric (see the review of matrices and vectors).

The elements along the main diagonal of C are the variances of the elements x, such

that cii = ¾2
xi

. When all the elements of x are uncorrelated or statistically independent,

cij = 0, and the covariance matrix becomes a diagonal matrix. If all the variances are

equal, then the covariance matrix becomes proportional to the identity matrix, with the

constant of proportionality being the variance of the elements of x:

Example 2.6 Consider the following bivariate (n = 2) Gaussian probability density

function

p(x) =
1

(2¼)n=2 jCj1=2
e¡ 1

2 [(x¡m)T C¡1(x¡m)]

with

m =

"
m1

m2

#

and

C =

"
c11 c12

c21 c22

#

where, because C is known to be symmetric, c12 = c21. A schematic diagram of this

density is shown in Fig. 2.2(a). Figure 2.2(b) is a horizontal slice of Fig. 2.2(a). From

our review of vectors and matrices, we know that the main directions of data spread are

in the directions of the eigenvectors of C: Furthermore, if the variables are uncorrelated

or statistically independent, the covariance matrix will be diagonal and the eigenvectors

will be in the same direction as the coordinate axes x1 and x2 (and the ellipse shown in

Fig. 2.2(b) would be oriented along the x1 and x2axis). If, in addition, the variances

along the main diagonal are equal, the density would be symmetrical in all directions (in

the form of a bell) and Fig. 2.2(b) would be a circle. Note in Figs. 2.2(a) and (b) that

the density is centered at the mean values (m1; m2). ¤
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2.8 Linear Transformations of Random Vectors

As discussed in Section 1.3, a linear transformation of a vector x to produce a vector y

is of the form

y = Ax:

Of particular importance in our work is the case when the rows of A are the eigenvectors

of the covariance matrix. Because C is real and symmetric, we know from the discussion

in Section 1.3 that it is always possible to find n orthonormal eigenvectors from which

to form A. The implications of this are discussed in considerable detail in Section 1.3,

which we recommend should be reviewed as a conclusion to the present discussion.

Figure 2.2





3 A Brief Overview of Linear
Systems

Because of their tractability and large body of application areas, linear systems play a

central role in most branches of science and engineering. In image processing, linear

systems are at the heart of many filtering operations, and they provide the basis for

analyzing complex problems in areas such as image restoration. The purpose of this

short review is to enhance the material in Section 2.6, and to provide the fundamentals

for the material in Chapters 4 and 5. In order to keep the discussion as basic as possible,

we will focus on functions of one variable. Extensions of these ideas to images (two

variables) are covered in Chapters 4 and 5, which also contain numerous illustrations.

3.1 Introductory Definitions

With reference to Fig. 3.1, we define a system as a unit that converts an input function

f(x) into an output (or response) function g(x), where x is an independent variable such

as time or, as in the case of images, spatial position. We assume for simplicity that x is a

continuous variable, but the results that will be derived are equally applicable to discrete

variables.

Figure 3.1

It is required that the system output be determined completely by the input, the system

properties, and a set of initial conditions. From Fig. 3.1, we write

g(x) = H[f(x)]

where H is the system operator, defined as a mapping or assignment of a member of

the set of possible outputs fg(x)g to each member of the set of possible inputs ff(x)g:
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In other words, the system operator completely characterizes the system response for a

given set of inputs ff(x)g:

An operator H is called a linear operator for a class of inputs ff(x)g if

H[®ifi(x) + ®jfj(x)] = aiH[fi(x)] + ajH[fji(x)]

= aigi(x) + ajgj(x)

for all fi(x) and fj(x) belonging to ff(x)g, where the a’s are arbitrary constants and

gi(x) = H[fi(x)]

is the output for an arbitrary input fi(x) 2 ff(x)g: The system described by a linear

operator is called a linear system (with respect to the same class of inputs as the oper

ator). The property that performing a linear process on the sum of inputs is the same

that performing the operations individually and then summing the results is called the

property of additivity. The property that the response of a linear system to a constant

times an input is the same as the response to the original input multiplied by a constant

is called the property of homogeneity.

An operator H is called time invariant (if x represents time), spatially invariant (if x is

a spatial variable), or simply fixed parameter, for some class of inputs ff(x)g if

gi(x) = H[fi(x)] implies that gi(x + x0) = H[fi(x + x0)]

for all fi(x) 2 ff(x)g and for all x0: A system described by a fixedparameter operator

is said to be a fixedparameter system. Basically all this means is that offsetting the in

dependent variable of the input by x0 causes the same offset in the independent variable

of the output. Hence, the inputoutput relationship remains the same.

An operator H is said to be causal, and hence the system described by H is a causal

system, if there is no output before there is an input. In other words,

f(x) = 0 for x < x0 implies that g(x) = H[f(x)] = 0 for x < x0:

Finally, a linear system H is said to be stable if its response to any bounded input is

bounded. That is, if

jf(x)j < K implies that jg(x)j < cK

where K and c are constants.

Example 3.1 Suppose that operator H is the integral operator between the limits ¡1
and x. Then, the output in terms of the input is given by

g(x) =

Z x

¡1
f(w)dw
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where w is a dummy variable of integration. This system obviously is linear because

Z x

¡1
[aifi(w) + ajfj(w)]dw = ai

Z x

¡1
fi(w)dw + aj

Z x

¡1
fj(w)dw

= aigi(x) + ajgj(x):

We see also that the system is fixed parameter because

g(x + x0) =

Z x+x0

¡1
f(w + x0)d(w + x0)

=

Z x+x0

¡1
f(w + x0)dw

= H[f(x + x0)]

where d(w + x0) = dw because x0 is a constant. Following similar manipulation it is

easy to show that this system also is causal and stable.

Consider now the system operator whose output is the inverse of the input so that

g(x) =
1

f(x)
:

In this case,

H[aifi(x) + ajfj(x)] =
1

[aifi(x) + ajfj(x)]

6= aiH[fi(x)] + ajH[fji(x)]

so this system is not linear. The system, however, is fixed parameter and causal. ¤

3.2 Linear System CharacterizationConvolution

A unit impulse function, denoted ±(x ¡ ®); is defined by the expressionZ 1

¡1
f(®)±(x ¡ ®)d® = f(x):

From the previous sections, the output of a system is given by g(x) = H[f(x)]: But,

we can express f(x) in terms of the impulse function just defined, so

g(x) = H

·Z 1

¡1
f(®)±(x ¡ ®)d®

¸
:

Extending the property of addivity to integrals (recall that an integral can be approxi

mated by limiting summations) allows us to write

g(x) =

Z 1

¡1
H [f(®)±(x ¡ ®)]d®:
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Because f(®) is independent of x, and using the homogeneity property, it follows that

g(x) =

Z 1

¡1
f(®)H[±(x ¡ ®)]d®

=

Z 1

¡1
f(®)h(x; ®)d®:

The term

h(x; ®) = H[±(x ¡ ®)]

is called the impulse response of H. In other words, h(x; ®) is the response of the linear

system to a unit impulse located at coordinate x (the origin of the impulse is the value

of ® that produces ±(0); in this case, this happens when ® = x). The expression

g(x) =

Z 1

¡1
f(®)h(x;®)d®

is called the superposition (or Fredholm) integral of the first kind. This expression is

a fundamental result that is at the core of linear system theory. It states that, if the

response of H to a unit impulse [i.e., h(x; ®)], is known, then response to any input f

can be computed using the preceding integral. In other words, the response of a linear

system is characterized completely by its impulse response.

If H is a fixedparameter operator, then

H[±(x ¡ ®)] = h(x ¡ ®)

and the superposition integral becomes

g(x) =

Z 1

¡1
f(®)h(x ¡ ®)d®:

This expression is called the convolution integral. It states that the response of a linear,

fixedparameter system is completely characterized by the convolution of the input with

the system impulse response. As will be seen shortly, this is a powerful and most

practical result.

Because the variable ® in the preceding equation is integrated out, it is customary to

write the convolution of f and h (both of which are functions of x) as

g(x) = f(x) ¤ h(x):

In other words,

f(x) ¤ h(x) ,
Z 1

¡1
f(®)g(x ¡ ®)d®:

The Fourier transform of this expression is

= [f(x) ¤ h(x)] =

Z 1

¡1

·Z 1

¡1
f(®)h(x ¡ ®)d®

¸
e¡j2¼uxdx

=

Z 1

¡1
f(®)

·Z 1

¡1
h(x ¡ ®)e¡j2¼uxdx

¸
d®:
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The term inside the inner brackets is the Fourier transform of h(x ¡ ®). But,

= [h(x ¡ ®)] = H(u)e¡j2¼u®

so

= [f(x) ¤ h(x)] =

Z 1

¡1
f(®)

£
H(u)e¡j2¼u®

¤
d®

= H(u)

Z 1

¡1
f(®)e¡j2¼u®d®

= H(u)F (u):

We have succeeded in proving that the Fourier transform of the convolution of two func

tions is the product of their Fourier transforms. Following a similar development, it

is not difficult to show that the inverse Fourier transform of the convolution of H(u)

and F (u) [i.e., H(u) ¤ F (u)] is the product f(x)g(x). This result is known as the

convolution theorem, typically written as

f(x) ¤ h(x) () H(u)F (u)

and

f(x)g(x) () H(u) ¤ F (u)

where “ () ” is used to indicate that the quantity on the right is obtained by taking

the Fourier transform of the quantity on the left, and, conversely, the quantity on the left

is obtained by taking the inverse Fourier transform of the quantity on the right. The

mechanics of convolution are explained in detail in the book. We have just filled in the

details of the proof of validity in the preceding paragraphs.

Because the output of our linear, fixedparameter system is

g(x) = f(x) ¤ h(x)

if we take the Fourier transform of both sides of this expression, it follows from the

convolution theorem that

G(u) = H(u)F (u):

The key importance of this result is that, instead of performing a convolution to obtain

the output of the system, we computer the Fourier transform of the impulse response

and the input, multiply them and then take the inverse Fourier transform of the product

to obtain g(x); that is,

g(x) = =¡1[G(u)]

= =¡1[H(u)F (u)]:

These results are the basis for all the filtering work done in Chapter 4, and some of the

work in Chapter 5 of Digital Image Processing. Those chapters extend the results to

two dimensions, and illustrate their application in considerable detail.


